Author:
Zhou Jingbo,Pan Laisheng,Li Yuehua,Liu Peng,Liu Lijian
Abstract
A line structured light sensor (LSLS) is generally constituted of a laser line projector and a camera. With the advantages of simple construction, non-contact, and high measuring speed, it is of great perspective in 3D measurement. For traditional LSLSs, the camera exposure time is usually fixed while the surface properties can be varied for different measurement tasks. This would lead to under/over exposure of the stripe images or even failure of the measurement. To avoid these undesired situations, an adaptive control method was proposed to modulate the average stripe width (ASW) within a favorite range. The ASW is first computed based on the back propagation neural network (BPNN), which can reach a high accuracy result and reduce the runtime dramatically. Then, the approximate linear relationship between the ASW and the exposure time was demonstrated via a series of experiments. Thus, a linear iteration procedure was proposed to compute the optimal camera exposure time. When the optimized exposure time is real-time adjusted, stripe images with the favorite ASW can be obtained during the whole scanning process. The smoothness of the stripe center lines and the surface integrity can be improved. A small proportion of the invalid stripe images further proves the effectiveness of the control method.
Funder
National Natural Science Foundation of China
Science Foundation of Hebei Province
Education Department of Hebei Province
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献