Abstract
In subtropical to temperate regions, persimmon (Diospyros kaki Thunb.) is an economically important fruit crop cultivated for its edible fruits. Persimmons are distributed abundantly and widely in Zhejiang Province, representing a valuable resource for the breeding of new cultivars and studying the origin and evolution of persimmon. In this study, we elucidated the genetic structures and diversity patterns of 179 persimmon germplasms from 16 different ecologic populations in Zhejiang Province based on the analysis of 17 SSR markers. The results show that there was a medium degree of genetic diversity for persimmon found in Zhejiang Province. With the exception of the Tiantai Mountain and Xin’an River populations, we found extensive gene exchange had occurred among the other populations. The 179 D. kaki germplasms from the 16 populations could be separated into three distinct clusters (I, II, and III) with a higher mean pairwise genetic differentiation index (FST) (0.2714). Nearly all samples of Cluster-I were distributed inland. Cluster-II and Cluster-III contained samples that were widely distributed throughout Zhejiang Province including all samples from the coastal populations and the Northeast Plain populations. In addition, we performed association mapping with nine traits (fruit crude fiber content, fruit calcium content, fruit water content, fruit longitudinal diameter, fruit aspect ratio, seed width, seed length, leaf aspect ratio, and number of lateral veins) using these markers. This led to the identification of 13 significant marker–trait associations (MTAs; p < 0.00044, 0.1/228) using a general linear model, of which, six MTAs with a correlation coefficient (R2) >10% were consistently represented in the general linear model with p < 0.00044 in the two models. The genetic structures and diversity patterns of the persimmon germplasms revealed in this study will provide a reference for the efficient conservation and further utilization of persimmon germplasms. The MTAs identified in this study will be useful for future marker-assisted breeding of persimmon.
Funder
Fundamental Research Funds of CAF
Reference89 articles.
1. Generic delimitation and relationships in Ebenaceae sensu lato: evidence from six plastid DNA regions
2. Persimmon in China: Domestication and traditional utilizations of genetic resources;Luo;Adv. Hortic. Sci.,2008
3. Persimmon genetics and breeding;Yonemori;Plant Breed. Rev.,2000
4. Number of Species and Geographical Distribution of Diospyros L. (Ebenaceae) in China
5. Chinese persimmon germplasm resources;Wang;Acta Hortic.,1997
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献