Thermal Performance of Micro Hotplates with Novel Shapes Based on Single-Layer SiO2 Suspended Film

Author:

Liu Qi,Ding Guifu,Wang Yipin,Yao Jinyuan

Abstract

In this paper, two kinds of suspended micro hotplate with novel shapes of multibeam structure and reticular structure are designed. These designs have a reliable mechanical strength, so they can be designed and fabricated on single-layer SiO2 suspended film through a simplified process. Single-layer suspended film helps to reduce power consumption. Based on the new film shapes, different resistance heaters with various widths and thicknesses are designed. Then, the temperature uniformity and power consumption of different micro hotplates are compared to study the effect of these variables and obtain the one with the optimal thermal performance. We report the simulations of temperature uniformity and give the corresponding infrared images in measurement. The experimental temperature differences are larger than those of the simulation. Experimental results show that the lowest power consumption and the minimum temperature difference are 43 mW and 50 °C, respectively, when the highest temperature on the suspended platform (240 × 240 μm2) is 450 °C. Compared to the traditional four-beam micro hotplate, temperature non-uniformity is reduced by about 30–50%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3