Designing Aquaponic Production Systems towards Integration into Greenhouse Farming

Author:

Danner Ragnar Ingi,Mankasingh Utra,Anamthawat-Jonsson Kesara,Thorarinsdottir Ragnheidur IngaORCID

Abstract

Aquaponics is a sustainable method of food production, whereby aquaculture and hydroponics are combined in one circular system. A few aquaponics startup companies are emerging in Europe with a limited production area of a few hundred or a few thousand square meters, whereas hydroponics is a common practice in a commercially viable manner most often with production units of several hectares. In Iceland, greenhouse farmers operate on relatively small production units, often between 2000 and 5000 m2. The aim of the present study was, therefore, to develop and design aquaponic production systems towards integration into small greenhouse farming strengthening economic viability and sustainability. Since the local market in Iceland is small and import is relatively expensive due to the distance from other markets, the suitability of commercially available fish feed and the selection of plant species were assessed in relation to production efficiency and available market and resources. The effects of water flow on plant growth and on nutrient utilization in culture water were measured and evaluated. Four aquaponics test systems were designed, built and operated, and results were used to develop a pilot commercial aquaponics system implemented for greenhouse farming in Iceland. One of the test systems was a media filled flood and drain system and the other three were deep water culture systems. Tilapia (Oreochromis niloticus), one of the most popular fish in aquaculture, was reared in all systems, while different leafy greens and fruiting vegetables were grown in the hydroponics. The fish was fed with commercial aquaculture feed made for cod and charr. The feed conversion ratio (FCR) was used to assess the effectiveness of feed on fish growth. The FCR observed in this research was between 0.9 and 1.2, within the typical values for tilapia growth in aquaculture. The production of the leafy green plants (e.g., pak-choi) was approximately four times, by weight, that of the production of fish, a similar yield as shown in other researches in the field. The continuous rise of nitrate and phosphate concentrations in the aquaponic system indicated the potential to support even higher crop yield. Long daylength in the summer in Iceland is clearly beneficial for crop production in aquaponics. Based on the results, it is concluded that aquaponics can be a feasible opportunity for greenhouse farming at least to diversify the current business model. Not only can the fish provide an extra income but also the effluent from the aquaculture is easily used as fertilizer for the plants, thus the circular production system offers new innovative ideas for diversifying and value-adding the business further, for example into crayfish production and/or into educational and experience tourism.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference54 articles.

1. An International Survey of Aquaponics Practitioners

2. Hydroponic lettuce production in a recirculating fish culture system;Rakocy;Isl. Perspect.,1988

3. The status of Aquaponics, Part 1;Rakocy;Aquac. Mag.,1999

4. Aquaculture Engineering;Lekang,2013

5. Ten Guidelines for Aquaponic Systems;Rakocy;Aquaponics J.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3