Author:
Wang Weimin,Zhang Jian,Brambley Michael R.,Futrell Benjamin
Abstract
Variable-air-volume (VAV) systems are used in many office buildings. The minimum airflow rate setting of VAV terminal boxes has a significant impact on both energy consumption and indoor air quality. Conventional controls usually have the terminal’s minimum airflow rate at a constant (e.g., 30% or more of the terminal design airflow rate), irrespective of the occupancy status, which may cause problems, such as excessive simultaneous heating and cooling, under ventilation, and thermal comfort issues. This paper examines the potential of energy savings from occupancy-based controls (OBCs). The sensed occupancy information, either occupant presence or people count, is used to determine the airflow rate of terminal boxes, the thermostat setpoints, and the lighting control. Using EnergyPlus, a whole-building energy modeling software, the energy savings of OBC strategies are evaluated for representative existing medium office buildings in the U.S. The simulation results show that the conventional OBC, based on occupant presence sensing, can save 8% of whole-building energy use in Miami (hot climate) for systems without air-side economizer and about 13% in both Baltimore (mixed climate) and Chicago (cold climate). Comparatively, the advanced OBC, based on people counting, can save 8% in Miami to 23% in Baltimore for systems with economizers. The outdoor-air fraction of the supply air from air-handling units significantly affects the potential energy savings from the advanced OBC strategy. In addition to energy savings, the advanced OBC satisfies the zone ventilation during all occupied hours over the whole year.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference40 articles.
1. Occupancy based control strategy for variable-air-volume (VAV) terminal box systems;Liu;ASHRAE Trans.,2011
2. ASHRAE Handbook—HVAC Systems and Equipment,2016
3. Dual maximum VAV box control logic;Taylor;ASHRAE J.,2012
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献