Maintenance Management through Intelligent Asset Management Platforms (IAMP). Emerging Factors, Key Impact Areas and Data Models

Author:

Crespo Marquez AdolfoORCID,Gomez Fernandez Juan FranciscoORCID,Martínez-Galán Fernández Pablo,Guillen Lopez AntonioORCID

Abstract

Maintenance Management is a key pillar in companies, especially energy utilities, which have high investments in assets, and so for its proper contribution has to be integrated and aligned with other departments in order to conserve the asset value and guarantee the services. In this line, Intelligent Assets Management Platforms (IAMP) are defined as software platforms to collect and analyze data from industrial assets. They are based on the use of digital technologies in industry. Beside the fact that monitoring and managing assets over the internet is gaining ground, this paper states that the IAMPs should also support a much better balanced and more strategic view in existing asset management and concretely in maintenance management. The real transformation can be achieved if these platforms help to understand business priorities in work and investments. In this paper, we first discuss about the factors explaining IAMP growth, then we explain the importance of considering, well in advance, those managerial aspects of the problem, for proper investments and suitable digital transformation through the adoption and use of IAMPs. A case study in the energy sector is presented to map, or to identify, those platform modules and Apps providing important value-added features to existing asset management practices. Later, attention is paid to the methodology used to develop the Apps’ data models from a maintenance point of view. To illustrate this point, a methodology for the development of the asset criticality analysis process data model is proposed. Finally, the paper includes conclusions of the work and relevant literature to this research.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3