Self-Powered Intelligent Water Droplet Monitoring Sensor Based on Solid–Liquid Triboelectric Nanogenerator

Author:

Zhu Lijie12,Guo Likang3,Ding Zhi1,Zhao Zhengqian1,Liu Chaoran3ORCID,Che Lufeng124ORCID

Affiliation:

1. College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China

2. Center for Microelectronics, Shaoxing Institute, Zhejiang University, Shaoxing 312035, China

3. Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China

4. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China

Abstract

Real-time monitoring of rainwater is a critical issue in the development of autonomous vehicles and smart homes, while the corresponding sensors play a pivotal role in ensuring their sensitivity. Here, we study a self-powered intelligent water droplet monitoring sensor based on a solid–liquid triboelectric nanogenerator (SL-TENG). The sensor comprises a SL-TENG, a signal acquisition module, a central processing unit (CPU), and a wireless transmission module, facilitating the real-time monitoring of water droplet signals. It is worth noting that the SL-TENG has self-powering characteristics and can convert the kinetic energy of water droplets into electrical energy. The excellent output performance, with open-circuit voltage of 9 V and short-circuit current of 2 μA without any treatment of the SL-TENG, can provide an effective solution to the problem that traditional sensor need battery replacement. In addition, the SL-TENG can generate stable amplitude electrical signals through water droplets, exemplified by the absence of decay in a short-circuit current within 7 days. More importantly, the sensor is equipped with intelligent analytical capabilities, allowing it to assess rainfall based on variables such as amplitude and frequency. Due to its excellent stability and intelligent analysis, this sensor can be used for roof rainwater monitoring, intravenous administration monitoring, and especially in automobile automatic wipers and other fields.

Funder

Special Support Program for High-level Talents in Zhejiang Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3