A Connectivity Metrics-Based Approach for the Prediction of Stress-Dependent Fracture Permeability

Author:

Deng Qinglin12ORCID,Shang Xueyi12ORCID,He Ping3

Affiliation:

1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China

2. School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China

3. Chengdu Design Consulting Group, Chengdu 610095, China

Abstract

Rapid and accurate assessment of fracture permeability is critical for subsurface resource and energy development as well as rock engineering stability. Fracture permeability deviates from the classical cubic law under the effect of roughness, geological stress, as well as mining-induced stress. Conventional laboratory tests and numerical simulations are commonly costly and time-consuming, whereas the use of a connectivity metric based on percolation theory can quickly predict fracture permeability, but with relatively low accuracy. For this reason, we selected two static connectivity metrics with the highest and lowest prediction accuracy in previous studies, respectively, and proposed to revise and use them for fracture permeability estimation, considering the effect of isolated large-aperture regions within the fractures under increasing normal stress. Several hundred fractures with different fractal dimensions and mismatch lengths were numerically generated and deformed, and their permeability was calculated by the local cubic law (LCL). Based on the dataset, the connectivity metrics were counted using the revised approach, and the results show that, regardless of the connectivity metrics, the new model greatly improves the accuracy of permeability prediction compared to the pre-improved model, by at least 8% for different cutoff aperture thresholds.

Funder

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Postdoctoral Fellowship Program of CPSF

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3