Classification of Malicious URLs Using Machine Learning

Author:

Abad Shayan1,Gholamy Hassan1,Aslani Mohammad1

Affiliation:

1. Department of Computer and Geo-Spatial Sciences, University of Gävle, 801 76 Gävle, Sweden

Abstract

Amid the rapid proliferation of thousands of new websites daily, distinguishing safe ones from potentially harmful ones has become an increasingly complex task. These websites often collect user data, and, without adequate cybersecurity measures such as the efficient detection and classification of malicious URLs, users’ sensitive information could be compromised. This study aims to develop models based on machine learning algorithms for the efficient identification and classification of malicious URLs, contributing to enhanced cybersecurity. Within this context, this study leverages support vector machines (SVMs), random forests (RFs), decision trees (DTs), and k-nearest neighbors (KNNs) in combination with Bayesian optimization to accurately classify URLs. To improve computational efficiency, instance selection methods are employed, including data reduction based on locality-sensitive hashing (DRLSH), border point extraction based on locality-sensitive hashing (BPLSH), and random selection. The results show the effectiveness of RFs in delivering high precision, recall, and F1 scores, with SVMs also providing competitive performance at the expense of increased training time. The results also emphasize the substantial impact of the instance selection method on the performance of these models, indicating its significance in the machine learning pipeline for malicious URL classification.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference22 articles.

1. A Novel Approach for Phishing URLs Detection Using Lexical Based Machine Learning in a Real-Time Environment;Gupta;Comput. Commun.,2021

2. Cybersecurity;Veale;Internet Policy Rev.,2020

3. Phishing URL Detection Using Machine Learning Methods;Ahammad;Adv. Eng. Softw.,2022

4. Phorecasting Phishing Attacks: A New Approach for Predicting the Appearance of Phishing Websites;Wardman;Cyber-Secur. Digit.,2016

5. Security Busters: Web Browser Security vs. Rogue Sites;Virvilis;Comput. Secur.,2015

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3