Polarization Properties of Coherently Superposed Rayleigh Backscattered Light in Single-Mode Fibers

Author:

Dong Hui1ORCID,Zhang Hailiang1,Hu Dora Juan Juan1ORCID

Affiliation:

1. Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #21-01, Connexis South Tower, Singapore 138632, Singapore

Abstract

The properties of the state of polarization (SOP) and the degree of polarization (DOP) of Rayleigh backscattered light (RBL) in single-mode fibers (SMF) are investigated theoretically and experimentally when the incident probe is a perfectly coherent continuous-wave (CW) light. It is concluded that the instantaneous DOP of the coherently superposed RBL is always 100%, and the instantaneous SOP is determined by the distributions of the birefringence and the optical phase along the SMF. Therefore, the instantaneous SOP of the coherently superposed RBL does not have a constant relationship with the SOP of the incident CW probe. Furthermore, the instantaneous SOP varies randomly with time because the optical phase is very sensitive to ambient temperature and vibration even in the lab environment. Further theoretical derivation and experimental verification demonstrate, for the first time, that the temporally averaged SOP of the coherently superposed RBL has a simple constant relationship with the SOP of the incident CW probe, and the temporally averaged DOP is 1/3 in an SMF with low and randomly distributed birefringence. The derived formulas and obtained findings can be used to enhance the modelling and improve the performances of phase-sensitive optical time-domain reflectometry and other Rayleigh backscattering based fiber-optic sensors.

Funder

A*STAR under its RIE 2020 Industry Alignment

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3