AC Dielectric Strength of Mineral Oil-Based Fe3O4 and Al2O3 Nanofluids

Author:

Khaled Usama,Beroual AbderrahmaneORCID

Abstract

This paper deals with an experimental study of the influence of conductive (Fe3O4) and insulating (Al2O3) nanoparticles at various concentrations on the dielectric strength of transformer mineral oil. The method of preparation and characterization of these nanofluids (NFs) through the measurements of zeta potential, the real and imaginary parts of dielectric permittivity as well as the concentration and size of nanoparticles using scanning electron microscope images of nanoparticles powders and energy dispersive x-ray spectroscopy analysis are presented. Experimental findings reveal that these two types of nanoparticles materials significantly improve AC breakdown voltage and the magnitude of this enhancement depends on the nanoparticle concentration, and the size and nature (material) of nanoparticles. For a given type of nanoparticle, the effect is more marked with the smallest nanoparticles. The conductive nanoparticles offer higher enhancement of dielectric strength compared with insulating nanoparticle based nanofluids. With Fe3O4, the breakdown voltage (BDV) can exceed twice that of mineral oil and it increases by more than 76% with Al2O3. The physicochemical mechanisms implicated in this improvement are discussed.

Funder

King Saud University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3