Author:
De Pascale Gennaro,Pintaudi Gabriele,Lisi Lucia,De Maio Flavio,Cutuli Salvatore Lucio,Tanzarella Eloisa Sofia,Carelli Simone,Lombardi Gianmarco,Cesarano Melania,Gennenzi Veronica,Ciotti Gabriella Maria Pia,Grieco Domenico Luca,Posteraro Brunella,Sanguinetti Maurizio,Navarra Pierluigi,Antonelli Massimo
Abstract
(1) Background: Colistin-only susceptible (COS) Acinetobacter baumannii (AB) ventilator-associated pneumonia (VAP) represents a clinical challenge in the Intensive Care Unit (ICU) due to the negligible lung diffusion of this molecule and the low-grade evidence on efficacy of its nebulization. (2) Methods: We conducted a prospective observational study on 134 ICU patients with COS-AB VAP to describe the ‘real life’ clinical use of high-dose (5 MIU q8) aerosolized colistin, using a vibrating mesh nebulizer. Lung pharmacokinetics and microbiome features were investigated. (3) Results: Patients were enrolled during the COVID-19 pandemic with the ICU presenting a SAPS II of 42 [32–57]. At VAP diagnosis, the median PaO2/FiO2 was 120 [100–164], 40.3% were in septic shock, and 24.6% had secondary bacteremia. The twenty-eight day mortality was 50.7% with 60.4% and 40.3% rates of clinical cure and microbiological eradication, respectively. We did not observe any drug-related adverse events. Epithelial lining fluid colistin concentrations were far above the CRAB minimal-inhibitory concentration and the duration of nebulized therapy was an independent predictor of microbiological eradication (12 [9.75–14] vs. 7 [4–13] days, OR (95% CI): 1.069 (1.003–1.138), p = 0.039). (4) Conclusions: High-dose and prolonged colistin nebulization, using a vibrating mesh, was a safe adjunctive therapeutic strategy for COS-AB VAP. Its right place and efficacy in this setting warrant investigation in interventional studies.
Funder
Italian Ministry for University and Scientific Research
Subject
Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology