From Epidemiology of Community-Onset Bloodstream Infections to the Development of Empirical Antimicrobial Treatment-Decision Algorithm in a Region with High Burden of Antimicrobial Resistance

Author:

Chotiprasitsakul Darunee1,Trirattanapikul Akeatit1,Namsiripongpun Warunyu1,Chaihongsa Narong2,Santanirand Pitak2

Affiliation:

1. Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand

2. Microbiology Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand

Abstract

Antimicrobial-resistant (AMR) infections have increased in community settings. Our objectives were to study the epidemiology of community-onset bloodstream infections (BSIs), identify risk factors for AMR-BSI and mortality-related factors, and develop the empirical antimicrobial treatment-decision algorithm. All adult, positive blood cultures at the emergency room and outpatient clinics were evaluated from 08/2021 to 04/2022. AMR was defined as the resistance of organisms to an antimicrobial to which they were previously sensitive. A total of 1151 positive blood cultures were identified. There were 450 initial episodes of bacterial BSI, and 114 BSIs (25%) were AMR-BSI. Non-susceptibility to ceftriaxone was detected in 40.9% of 195 E. coli isolates and 16.4% among 67 K. pneumoniae isolates. A treatment-decision algorithm was developed using the independent risk factors for AMR-BSI: presence of multidrug-resistant organisms (MDROs) within 90 days (aOR 3.63), prior antimicrobial exposure within 90 days (aOR 1.94), and urinary source (aOR 1.79). The positive and negative predictive values were 53.3% and 83.2%, respectively. The C-statistic was 0.73. Factors significantly associated with 30-day all-cause mortality were Pitt bacteremia score (aHR 1.39), solid malignancy (aHR 2.61), and urinary source (aHR 0.30). In conclusion, one-fourth of community-onset BSI were antimicrobial-resistant, and one-third of Enterobacteriaceae were non-susceptible to ceftriaxone. Treatment-decision algorithms may reduce overly broad antimicrobial treatment.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3