Benzothiazole-Phthalimide Hybrids as Anti-Breast Cancer and Antimicrobial Agents

Author:

Barbarossa Alexia1,Ceramella Jessica2ORCID,Carocci Alessia1ORCID,Iacopetta Domenico2ORCID,Rosato Antonio1ORCID,Limongelli Francesco1ORCID,Carrieri Antonio1ORCID,Bonofiglio Daniela2ORCID,Sinicropi Maria Stefania2ORCID

Affiliation:

1. Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy

2. Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy

Abstract

The benzothiazole nucleus is a major heterocyclic scaffold whose therapeutic potential has been thoroughly explored due to its structural simplicity and ease of synthesis. In fact, several benzothiazole derivatives have been synthesized over time, demonstrating numerous pharmacological properties such as anticancer, antimicrobial, anti-inflammatory, and antioxidant activities. Herein, we propose a new series of benzothiazole-phthalimide hybrids obtained by linking the phthalimide moiety to differently substituted benzothiazole nuclei through the N atom. These compounds have been screened for their anticancer properties against two human breast cancer cell lines. Furthermore, we delved into the mechanism of action of the most active hybrid, compound 3h, by assessing its capability to damage the nuclear DNA, trigger the apoptotic process in the high metastatic MDA-MB-231 cells, and prevent cellular migration. Moreover, in view of the documented antimicrobial activities of the two scaffolds involved, we explored the antibacterial and antifungal effects of the studied compounds by means of the broth microdilution method. Among the studied compounds, 3h showed the highest antimicrobial activity, both against gram-positive and gram-negative bacterial strains belonging to the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) and against fungal strains of the Candida species with MICs values ranging from 16 to 32 µg/mL.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3