Analysis of Resistance Gene Diversity in the Intestinal Microbiome of Broilers from Two Types of Broiler Farms in Hebei Province, China

Author:

Liang Chuncai1,Wei Yujie1,Wang Xiaolan1,Gao Jinduo1,Cui Huan1,Zhang Cheng1,Liu Juxiang1ORCID

Affiliation:

1. College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China

Abstract

The crucial reservoir of antibiotic resistance genes (ARGs) within the chicken intestinal microbiome poses a serious threat to both animal and human health. In China, the overuse of antibiotics has significantly contributed to the proliferation of ARGs in the chicken intestinal microbiome, which is a serious concern. However, there has been relatively little research on the diversity of resistance genes in the chicken intestinal microbiome since the implementation of the National Pilot Work Program for Action to Reduce the Use of Veterinary Antimicrobial Drugs in China. The objective of this study was to analyze the diversity of antibiotic resistance genes carried by the chicken intestinal microbiome in both standard farms (SFs), which implement antibiotic reduction and passed national acceptance, and nonstandard farms (NSFs), which do not implement antibiotic reductions, in Hebei Province. Fresh fecal samples of broiler chickens were collected from SFs (n = 4) and NSF (n = 1) and analyzed using high-throughput qPCR technology. Our findings revealed that all five farms exhibited a wide range of highly abundant ARGs, with a total of 201 ARGs and 7 MGEs detected in all fecal samples. The dominant ARGs identified conferred resistance to aminoglycosides, macrolide-lincosamide-streptomycin B (MLSB), and tetracycline antibiotics. Cellular protection mechanisms were found to be the primary resistance mechanism for these ARGs. The analysis of the co-occurrence network demonstrated a significant positive correlation between the abundance of MGEs and ARGs. The SF samples showed a significantly lower relative abundance of certain ARGs than the NSF samples (p < 0.05). The results of this study show that the abundance of ARGs demonstrated a downward trend after the implementation of the National Pilot Work Program for Action to Reduce the Usage of Veterinary Antimicrobial Drugs in Hebei Province, China.

Funder

special project of introducing talents for scientific research in Hebei Agricultural University

Natural Science Foundation of Hebei Province

Hebei Industrial Technology System

Key Research Projects in Hebei Province

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3