High Emergence of Multidrug-Resistant Sequence Type 131 Subclade C2 among Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli Isolated from the University Hospital Bratislava, Slovakia

Author:

Koreň Ján1,Andrezál Michal2,Ozaee Elham2,Drahovská Hana2,Wawruch Martin3ORCID,Liptáková Adriána1ORCID,Maliar Tibor4ORCID

Affiliation:

1. Institute of Microbiology, Faculty of Medicine, Comenius University, University Hospital Bratislava, 81108 Bratislava, Slovakia

2. Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia

3. Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia

4. Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, 91701 Trnava, Slovakia

Abstract

The expansion of sequence type 131 (ST131) extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (E. coli) represents major worldwide challenges. E. coli strains originating from healthcare facilities (labeled No. 1 and No. 2) of the University Hospital Bratislava (UHB) were analyzed for ST131 emergence, including its (sub)lineages and clonal relatedness. Antimicrobial resistance was determined in most strains. Of a total of 354 E. coli strains, 263 (74.3%) belonged to ST131; of these, 177 (67.3%) were from No. 1. Generally, among 260 ST131 E. coli, clades A/B were confirmed in 20 (7.7%), while clade C was noted in 240 (92.3%) strains; within them, subclades were detected as follows: C0 (17; 7.1%), C1 (3; 1.2%), and C2 (220; 91.7%). Among fifteen randomly selected E. coli strains that were investigated for ST and clonal relatedness, seven STs were identified: eight (53.3%) ST131, two (13.3%) ST73, and one each (6.7%) of ST10, ST12, ST14, ST1193, and ST1196. From No. 1, two ST131 in the first internal clinic and one ST131 from No. 2 in the aftercare department were highly clonally related, suggesting possible epidemiological association. Antimicrobial resistance was as follows: ciprofloxacin 93.8%, ceftazidime 78.4%, meropenem 0%, fosfomycin 2.9% and nitrofurantoin 1.4%. Prevention of ESBL-producing E. coli dissemination, especially for ST131 clade C2, is inevitably necessary for reducing drug resistance and decreasing healthcare-associated infections.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3