Epidemiology of Antimicrobial Resistance Genes in Staphyloccocus aureus Isolates from a Public Database in a One Health Perspective—Sample Characteristics and Isolates’ Sources

Author:

Zaghen Francesca12ORCID,Sora Valerio Massimo12ORCID,Meroni Gabriele1ORCID,Laterza Giulia12ORCID,Martino Piera Anna1ORCID,Soggiu Alessio1ORCID,Bonizzi Luigi1,Zecconi Alfonso1ORCID

Affiliation:

1. Department of Biomedical, Surgical and Dental Sciences-One Health Unit, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy

2. Department of Clinical and Community Sciences, School of Medicine, University of Milan, Via Celoria 22, 20133 Milan, Italy

Abstract

Staphylococcus aureus is considered one of the most widespread bacterial pathogens for both animals and humans, being the causative agent of various diseases like food poisoning, respiratory tract infections, nosocomial bacteremia, and surgical site and cardiovascular infections in humans, as well as clinical and subclinical mastitis, dermatitis, and suppurative infections in animals. Thanks to their genetic flexibility, several virulent and drug-resistant strains have evolved mainly due to horizontal gene transfer and insurgence of point mutations. Infections caused by the colonization of such strains are particularly problematic due to frequently occurring antibiotic resistance, particulary methicillin-resistant S. aureus (MRSA), and are characterized by increased mortality, morbidity, and hospitalization rates compared to those caused by methicillin-sensitive S. aureus (MSSA). S. aureus infections in humans and animals are a prime example of a disease that may be managed by a One Health strategy. In fact, S. aureus is a significant target for control efforts due to its zoonotic potential, the frequency of its illnesses in both humans and animals, and the threat posed by S. aureus antibiotic resistance globally. The results of an epidemiological analysis on a worldwide public database (NCBI Pathogen Detection Isolate Browser; NPDIB) of 35,026 S. aureus isolates were described. We considered the diffusion of antibiotic resistance genes (ARGs), in both human and animal setting, and the results may be considered alarming. The result of this study allowed us to identify the presence of clusters with specific ARG patterns, and that these clusters are associated with different sources of isolation (e.g., human, non-human).

Funder

FEASR

PRIN

University of Milan

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3