Comparative Transcriptomic Profiling of Pellicle and Planktonic Cells from Carbapenem-Resistant Acinetobacter baumannii

Author:

Ng Heng Kang1ORCID,Puah Suat Moi1ORCID,Teh Cindy Shuan Ju2,Idris Nuryana2,Chua Kek Heng1ORCID

Affiliation:

1. Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia

2. Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia

Abstract

Acinetobacter baumannii forms air–liquid interface pellicles that boost its ability to withstand desiccation and increase survival under antibiotic pressure. This study aims to delve into the transcriptomic profiles of pellicle cells from clinical strains of carbapenem-resistant A. baumannii (CRAB). The total RNA was extracted from pellicle cells from three pellicle-forming CRAB strains and planktonic cells from three non-pellicle-forming CRAB strains, subject to RNA sequencing using Illumina HiSeq 2500 system. A transcriptomic analysis between pellicle and planktonic cells, along with differential expression genes (DEGs) analysis and enrichment analysis of annotated COGs, GOs, and KEGGs, was performed. Our analysis identified 366 DEGs in pellicle cells: 162 upregulated genes and 204 downregulated genes. The upregulated ABUW_1624 (yiaY) gene and downregulated ABUW_1550 gene indicated potential involvement in fatty acid degradation during pellicle formation. Another upregulated ABUW_2820 (metQ) gene, encoding the D-methionine transporter system, hinted at its contribution to pellicle formation. The upregulation of two-component systems, CusSR and KdpDE, which implies the regulation of copper and potassium ions in a CRAB pellicle formation was also observed. These findings provide valuable insights into the regulation of gene expression during the formation of pellicles in CRAB, and these are potential targets that may aid in the eradication of CRAB infections.

Funder

Fundamental Research Grant Scheme from the Malaysian Ministry of Higher Education

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3