Bacterial Adhesion Strength on Titanium Surfaces Quantified by Atomic Force Microscopy: A Systematic Review

Author:

Tardelli Juliana Dias Corpa1ORCID,Bagnato Vanderlei Salvador2ORCID,Reis Andréa Cândido dos1ORCID

Affiliation:

1. Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040-904, Brazil

2. Department of Physics and Materials Science, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos 13566-970, Brazil

Abstract

Few studies have been able to elucidate the correlation of factors determining the strength of interaction between bacterial cells and substrate at the molecular level. The aim was to answer the following question: What biophysical factors should be considered when analyzing the bacterial adhesion strength on titanium surfaces and its alloys for implants quantified by atomic force microscopy? This review followed PRISMA. The search strategy was applied in four databases. The selection process was carried out in two stages. The risk of bias was analyzed. One thousand four hundred sixty-three articles were found. After removing the duplicates, 1126 were screened by title and abstract, of which 57 were selected for full reading and 5 were included; 3 had a low risk of bias and 2 moderated risks of bias. (1) The current literature shows the preference of bacteria to adhere to surfaces of the same hydrophilicity. However, this fact was contradicted by this systematic review, which demonstrated that hydrophobic bacteria developed hydrogen bonds and adhered to hydrophilic surfaces; (2) the application of surface treatments that induce the reduction of areas favorable for bacterial adhesion interfere more in the formation of biofilm than surface roughness; and (3) bacterial colonization should be evaluated in time-dependent studies as they develop adaptation mechanisms, related to time, which are obscure in this review.

Funder

FAPESP

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3