Effect of Antimicrobial Peptide BiF2_5K7K on Contaminated Bacteria Isolated from Boar Semen and Semen Qualities during Preservation and Subsequent Fertility Test on Pig Farm

Author:

Keeratikunakorn Krittika1ORCID,Chanapiwat Panida1ORCID,Aunpad Ratchaneewan2ORCID,Ngamwongsatit Natharin34ORCID,Kaeoket Kampon1ORCID

Affiliation:

1. Semen Laboratory, Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand

2. Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Klong Luang, Pathumthani 12120, Thailand

3. Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand

4. Laboratory of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand

Abstract

The purpose of this study was to determine the impact of an antimicrobial peptide, BiF2_5K7K, on semen quality and bacterial contamination in boar semen doses used for artificial insemination. A key factor affecting semen quality and farm production is bacterial contamination in semen doses. Using antibiotics in a semen extender seems to be the best solution for minimizing bacterial growth during semen preservation. However, concern regarding antibiotic-resistant microorganisms has grown globally. As a result, antimicrobial peptides have emerged as interesting alternative antimicrobial agents to replace the current antibiotics used in semen extenders. BiF2_5K7K is an antimicrobial peptide that can inhibit Gram-negative and Gram-positive bacteria isolated from boar semen and sow vaginal discharge. In this study, ten fresh boar semen samples were collected and diluted with one of two types of semen extender: with (positive control) or without (negative control) an antibiotic (i.e., gentamicin). The semen extender without an antibiotic contained antimicrobial peptide BiF2_5K7K at different concentrations (15.625, 31.25, 62.5, and 125 µg/mL). The samples were stored at 18 °C until use. Semen quality parameters were assessed on days 0, 1, 3, and 5, and the total bacterial count was also evaluated at 0, 24, 36, 48, and 72 h after storage. A fertility test on a pig farm was also performed via sow insemination with a commercial extender plus BiF2_5K7K at a concentration of 31.25 µg/mL. No significant difference was found in terms of semen quality on days 0 or 1. On days 3 and 5, the total motility, progressive motility, and viability remained normal in the 15.625 and 31.25 µg/mL groups. However, the sperm parameters decreased starting on day 3 for the 125 µg/mL group and on day 5 for the 62.5 µg/mL group. For total bacterial count at 0, 24, 36, 48, and 72 h, the lowest bacterial count was found in the positive control group, and the highest bacterial count was found in the negative control group compared with the other groups. Comparing antimicrobial peptide groups from 0 to 48 h, the lowest bacterial count was found in the 125 µg/mL group, and the highest bacterial count was found in the 15.625 µg/mL group. For the fertility test, artificial insemination was conducted by using a commercial extender plus BiF2_5K7K at a concentration of 31.25 µg/mL. The results showed a superior pregnancy rate, farrowing rate, and total number of piglets born compared with artificial insemination conducted using a commercial extender plus antibiotic. In conclusion, BiF2_5K7K can inhibit bacterial growth in extended boar semen for 24 h, and thereafter, the bacterial count slightly increases. However, the increase in the number of bacterial counts from days 0 to 3 had no negative effect on sperm quality in the positive control, 15.625, or 31.25 µg/mL groups. This indicates that BiF2_5K7K might be an antimicrobial peptide candidate with potential for use as an alternative antimicrobial agent to replace the conventional antibiotic used in boar semen extenders.

Funder

National Research Council of Thailand (NRCT) and Mahidol University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3