Advancing Antibiotic Residue Analysis: LC-MS/MS Methodology for Ticarcillin Degradation Products in Tomato Leaves

Author:

Hakeem Muhammad K.1ORCID,Elangovan Sampathkumar12,Rafi Mohammed2,George Suja2ORCID,Shah Iltaf2ORCID,Amiri Khaled M. A.23ORCID

Affiliation:

1. Department of Chemistry, College of Science, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates

2. Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates

3. Department of Biology, College of Science, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates

Abstract

The indiscriminate use of antibiotics in agriculture has raised concerns about antibiotic residues in food products, necessitating robust analytical methods for detection and quantification. In this study, our primary aim was to develop a robust and advanced liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodology specifically designed for the accurate quantification of ticarcillin degradation products in tomato leaves. The choice of ticarcillin as the target analyte stems from its frequent use in agriculture and the potential formation of degradation products, which can pose a threat to food safety. The use of tomatoes as the target sample matrix in this study is justified by their significance in human diets, their widespread cultivation, and their suitability as a model for assessing antibiotic residue dynamics in diverse agricultural environments. By optimizing the MS/MS parameters, the study successfully demonstrates the practicality and reliability of the employed LC-MS/MS method in accurately assessing ticarcillin degradation product (Thiophene-2-Acetic acid and Thiophene-3-Acetic acid) levels. The chromatographic separation was achieved using a specialized column, ensuring high resolution and sensitivity in detecting analytes. Multiple reaction monitoring (MRM) data acquisition was employed to enhance the selectivity and accuracy of the analysis. The developed method exhibited excellent linearity and precision, meeting the stringent requirements for antibiotic residue analysis in complex matrices. Key outcomes of this study include the successful identification and quantification of ticarcillin and its degradation products in tomato leaves, providing crucial insights into the fate of this antibiotic in agricultural settings. The methodology’s applicability was further demonstrated by analyzing real-world samples, highlighting its potential for routine monitoring and ensuring food safety compliance. In summary, our study constitutes a noteworthy advancement in the domain of antibiotic residue analysis, offering a reliable method for quantifying ticarcillin degradation products in tomato leaves. The optimized parameters and MRM-based LC-MS/MS approach enhance the precision and sensitivity of the analysis, opening up opportunities for further studies in the assessment of antibiotic residues in agricultural ecosystems.

Funder

KCGEB

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3