General and Specific Cytotoxicity of Chimeric Antisense Oligonucleotides in Bacterial Cells and Human Cell Lines

Author:

Popova Katya B.12ORCID,Penchovsky Robert1ORCID

Affiliation:

1. Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria

2. Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria

Abstract

In the last two decades, antisense oligonucleotide technology has emerged as a promising approach to tackling various healthcare issues and diseases, such as antimicrobial resistance, cancer, and neurodegenerative diseases. Despite the numerous improvements in the structure and modifications of the antisense oligonucleotides (ASOs), there are still specific problems with their clinical efficacy and preclinical cytotoxicity results. To better understand the effects of the ASOs in this paper, we conducted many MTT assays to assess the general and specific cytotoxicity of four new chimeric ASOs in bacterial cells and human cell lines. We demonstrate the absence of inhibitory activity in the human pathogenic bacteria Staphylococcus aureus by non-specific ASOs. The pVEC-ASO1 and pVEC-ASO2 are designed to have no specific targets in S. aureus. They have only partial hybridization to the guanylate kinase mRNA. The pVEC-ASO3 targets UBA2 mRNA, a hallmark cancer pathology in MYC-driven cancer, while pVEC-ASO4 has no complementary sequences. We discovered some cytotoxicity of the non-specific ASOs in healthy and cancer human cell lines. The results are compared with two other ASOs, targeting specific mRNA in cancer cells. All ASOs are delivered into the cell via the cell-penetrating oligopeptide pVEC, which is attached to them. We draw a good correlation between the thermodynamic stability of ASO/target RNA and the toxicity effect in human cell lines. The data obtained signify the importance of thorough bioinformatic analysis and high specificity in designing and developing novel ASOs for safer therapeutic agents in clinical practice.

Funder

Bulgarian National Science Fund

Sofia University

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Reference51 articles.

1. NCBI BLAST: A better web interface;Johnson;Nucleic Acids Res.,2008

2. Antisense oligonucleotide technologies in drug discovery;Expert Opin. Drug Discov.,2006

3. Antisense oligonucleotides: From design to therapeutic application;Chan;Clin. Exp. Pharmacol. Physiol.,2006

4. Advances in antisense oligonucleotide development for target identification, validation, and as novel therapeutics;Mansoor;Gene Regul. Syst. Biol.,2008

5. Pavlova, N., Traykovska, M., and Penchovsky, R. (2023). Targeting FMN, TPP, SAM-I, and glmS Riboswitches with Chimeric Antisense Oligonucleotides for Completely Rational Antibacterial Drug Development. Antibiotics, 12.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3