Synthesis, Characterization, Cytotoxicity Analysis and Evaluation of Novel Heterocyclic Derivatives of Benzamidine against Periodontal Disease Triggering Bacteria

Author:

Kavitha Ramasamy1,Sa’ad Mohammad Auwal12,Fuloria Shivkanya3,Fuloria Neeraj Kumar34,Ravichandran Manickam125ORCID,Lalitha Pattabhiraman6

Affiliation:

1. Department of Biotechnology, Faculty of Applied Science, AIMST University, Bedong 08100, Kedah, Malaysia

2. Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Bedong 08100, Kedah, Malaysia

3. Centre of Excellence for Biomaterials Engineering, Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia

4. Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai 600077, Tamil Nadu, India

5. Mygenome, ALPS Global Holding, Kuala Lumpur 50400, Malaysia

6. Department of Biochemistry, Faculty of Medicine, AIMST University, Bedong 08100, Kedah, Malaysia

Abstract

Periodontal disease (PD) is multifactorial oral disease that damages tooth-supporting tissue. PD treatment includes proper oral hygiene, deep cleaning, antibiotics therapy, and surgery. Despite the availability of basic treatments, some of these are rendered undesirable in PD treatment due to side effects and expense. Therefore, the aim of the present study is to develop novel molecules to combat the PD triggering pathogens. The study involved the synthesis of 4-((5-(substituted-phenyl)-1,3,4-oxadiazol-2-yl)methoxy)benzamidine (5a-e), by condensation of 2-(4-carbamimidoylphenoxy)acetohydrazide (3) with different aromatic acids; and synthesis of 4-((4-(substituted benzylideneamino)-4H-1,2,4-triazol-3-yl)methoxy)benzamidine (6a-b) by treatment of compound 3 with CS2 followed by hydrazination and a Schiff reaction with different aromatic aldehydes. Synthesized compounds were characterized based on the NMR, FTIR, and mass spectrometric data. To assess the effectiveness of the newly synthesized compound in PD, new compounds were subjected to antimicrobial evaluation against P. gingivalis and E. coli using the micro-broth dilution method. Synthesized compounds were also subjected to cytotoxicity evaluation against HEK-293 cells using an MTT assay. The present study revealed the successful synthesis of heterocyclic derivatives of benzamidine with significant inhibitory potential against P. gingivalis and E. coli. Synthesized compounds exhibited minimal to the absence of cytotoxicity. Significant antimicrobial potential and least/no cytotoxicity of new heterocyclic analogs of benzamidine against PD-triggering bacteria supports their potential application in PD treatment.

Funder

Ministry of Higher Education (MOHE) Malaysia

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3