Implementing Vancomycin Population Pharmacokinetic Models: An App for Individualized Antibiotic Therapy in Critically Ill Patients

Author:

Mena Manuel1ORCID,Garcia Julio-Cesar1ORCID,Bustos Rosa-Helena1ORCID

Affiliation:

1. Department of Clinical Pharmacology, Evidence-Based Therapeutics Group, Faculty of Medicine, Campus del Puente del Común, Universidad de La Sabana and Clínica Universidad de La Sabana, Km. 7, Autopista Norte de Bogotá, Chía 1400132, Cundinamarca, Colombia

Abstract

In individualized therapy, the Bayesian approach integrated with population pharmacokinetic models (PopPK) for predictions together with therapeutic drug monitoring (TDM) to maintain adequate objectives is useful to maximize the efficacy and minimize the probability of toxicity of vancomycin in critically ill patients. Although there are limitations to implementation, model-informed precision dosing (MIPD) is an approach to integrate these elements, which has the potential to optimize the TDM process and maximize the success of antibacterial therapy. The objective of this work was to present an app for individualized therapy and perform a validation of the implemented vancomycin PopPK models. A pragmatic approach was used for selecting the models of Llopis, Goti and Revilla for developing a Shiny app with R. Through ordinary differential equation (ODE)-based mixed effects models from the mlxR package, the app simulates the concentrations’ behavior, estimates whether the model was simulated without variability and predicts whether the model was simulated with variability. Moreover, we evaluated the predictive performance with retrospective trough concentration data from patients admitted to the adult critical care unit. Although there were no significant differences in the performance of the estimates, the Llopis model showed better accuracy (mean 80.88%; SD 46.5%); however, it had greater bias (mean −34.47%, SD 63.38%) compared to the Revilla et al. (mean 10.61%, SD 66.37%) and Goti et al. (mean of 13.54%, SD 64.93%) models. With respect to the RMSE (root mean square error), the Llopis (mean of 10.69 mg/L, SD 12.23 mg/L) and Revilla models (mean of 10.65 mg/L, SD 12.81 mg/L) were comparable, and the lowest RMSE was found in the Goti model (mean 9.06 mg/L, SD 9 mg/L). Regarding the predictions, this behavior did not change, and the results varied relatively little. Although our results are satisfactory, the predictive performance in recent studies with vancomycin is heterogeneous, and although these three models have proven to be useful for clinical application, further research and adaptation of PopPK models is required, as well as implementation in the clinical practice of MIPD and TDM in real time.

Funder

Universidad de La Sabana, Departamento Administrativo de Ciencia, Tecnología e Innovación, MinCiencias

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3