Anti-Staphylococcal Activities of Rosmarinus officinalis and Myrtus communis Essential Oils through ROS-Mediated Oxidative Stress

Author:

Bowbe Khadijetou Hamoud1,Salah Karima Bel Hadj12ORCID,Moumni Sarra3,Ashkan Mada F.2,Merghni Abderrahmen4ORCID

Affiliation:

1. Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia

2. Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia

3. Laboratory of Pharmaceutical, Chemical and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia

4. Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1007, Tunisia

Abstract

Rosmarinus officinalis and Myrtus communis essential oils (EOs) are well-known for their ethno-pharmaceutical properties. In the present study, we have analyzed the chemical composition of both EOs by gas chromatography-mass spectrometry. Then we assessed their antibacterial, antibiofilm, and anti-virulence actions against the opportunistic pathogen Staphylococcus aureus. The cytotoxic effect of agents tested against this bacterium was investigated by monitoring reactive oxygen-species (ROS) generation and antioxidant-enzyme (catalase) production. Regarding the antistaphylococcal effects, our results showed antibacterial efficacy of both Eos and their combination, where the minimum inhibitory concentrations ranged between 0.7 and 11.25 mg/mL. A combination of tested agents showed the highest anti-hemolytic and anti-protease effects. Additionally, association between EOs displayed more potency against the development of biofilm performed by S. aureus, with percentage of removal reaching 74%. The inhibitory impacts of EOs on S. aureus virulence factors were discovered to be concentration-dependent. Furthermore, our results provide insight on the abilities of R. officinalis and M. communis EOs, as well as their potential in combination, to generate ROS and affect oxidative stress enzyme catalase in S. aureus, leading to their antagonistic effect against this pathogen.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3