Predictive Modeling of Phenotypic Antimicrobial Susceptibility of Selected Beta-Lactam Antimicrobials from Beta-Lactamase Resistance Genes

Author:

Rahman Md. Kaisar1ORCID,Williams Ryan B.1,Ajulo Samuel1ORCID,Levent Gizem1ORCID,Loneragan Guy H.1,Awosile Babafela1ORCID

Affiliation:

1. School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA

Abstract

The outcome of bacterial infection management relies on prompt diagnosis and effective treatment, but conventional antimicrobial susceptibility testing can be slow and labor-intensive. Therefore, this study aims to predict phenotypic antimicrobial susceptibility of selected beta-lactam antimicrobials in the bacteria of the family Enterobacteriaceae from different beta-lactamase resistance genotypes. Using human datasets extracted from the Antimicrobial Testing Leadership and Surveillance (ATLAS) program conducted by Pfizer and retail meat datasets from the National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS), we used a robust or weighted least square multivariable linear regression modeling framework to explore the relationship between antimicrobial susceptibility data of beta-lactam antimicrobials and different types of beta-lactamase resistance genes. In humans, in the presence of the blaCTX-M-1, blaCTX-M-2, blaCTX-M-8/25, and blaCTX-M-9 groups, MICs of cephalosporins significantly increased by values between 0.34–3.07 μg/mL, however, the MICs of carbapenem significantly decreased by values between 0.81–0.87 μg/mL. In the presence of carbapenemase genes (blaKPC, blaNDM, blaIMP, and blaVIM), the MICs of cephalosporin antimicrobials significantly increased by values between 1.06–5.77 μg/mL, while the MICs of carbapenem antimicrobials significantly increased by values between 5.39–67.38 μg/mL. In retail meat, MIC of ceftriaxone increased significantly in the presence of blaCMY-2, blaCTX-M-1, blaCTX-M-55, blaCTX-M-65, and blaSHV-2 by 55.16 μg/mL, 222.70 μg/mL, 250.81 μg/mL, 204.89 μg/mL, and 31.51 μg/mL respectively. MIC of cefoxitin increased significantly in the presence of blaCTX-M-65 and blaTEM-1 by 1.57 μg/mL and 1.04 μg/mL respectively. In the presence of blaCMY-2, MIC of cefoxitin increased by an average of 8.66 μg/mL over 17 years. Compared to E. coli isolates, MIC of cefoxitin in Salmonella enterica isolates decreased significantly by 0.67 μg/mL. On the other hand, MIC of ceftiofur increased in the presence of blaCTX-M-1, blaCTX-M-65, blaSHV-2, and blaTEM-1 by 8.82 μg/mL, 9.11 μg/mL, 8.18 μg/mL, and 1.04 μg/mL respectively. In the presence of blaCMY-2, MIC of ceftiofur increased by an average of 10.20 μg/mL over 14 years. The ability to predict antimicrobial susceptibility of beta-lactam antimicrobials directly from beta-lactamase resistance genes may help reduce the reliance on routine phenotypic testing with higher turnaround times in diagnostic, therapeutic, and surveillance of antimicrobial-resistant bacteria of the family Enterobacteriaceae.

Publisher

MDPI AG

Reference43 articles.

1. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis;Murray;Lancet,2022

2. Antibiotic selective pressure and development of bacterial resistance;Urbanek;Int. J. Antimicrob. Agents,2001

3. Evolutionary trajectories to antibiotic resistance;Hughes;Annu. Rev. Microbiol.,2017

4. CDC (2022, December 26). Antibiotic Resistance Threats in the United States, Available online: www.cdc.gov/DrugResistance/Biggest-Threats.html.

5. Antimicrobial Resistance: Implications and Costs;Dadgostar;Infect. Drug Resist.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3