Abstract
Actinobacteria isolated from untapped environments and exposed to extreme conditions such as saltpans are a promising source of novel bioactive compounds. These microorganisms can provide new molecules through either the biosynthetic pathway or the biotransformation of organic molecules. In the present study, we performed a chemical metabolic screening of secondary metabolites secreted by the new strain CG3, which was isolated from a saltpan located in the Sahara of Algeria, via high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-ESI-HRMS). The results indicated that this strain produced five new polyene macrolactams, kenalactams A–E, along with two known compounds, mitomycin C and 6″-hydroxy-4,2′,3′,4″ tetramethoxy-p-terphenyl. Furthermore, the CG3 isolate could have excellent properties for converting the aglycone isoflavone glycitein to the compounds 6,7-dimethoxy-3-(4-methoxyphenyl)chromen-4-one (50) and 6,7-dimethoxy-3-phenylchromen-4-one (54), and the isoflavone genistein can be converted to 5,7-dimethoxy-3-(4-methoxyphenyl)chromen-4-one (52). Docking studies and molecular dynamics simulations indicated that these three isoflavones, generated via biotransformation, are potent inhibitors of the target protein aromatase (CYP19A1); consequently, they can be used to prevent breast cancer risk in postmenopausal women.
Funder
General Directorate of Research and Technology Development, Ministry of Higher Education and Scientific Research of Algeria
Subject
Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology