Affiliation:
1. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
Abstract
This study evaluates the antibacterial and antifungal effects of ethanol extracts from Gnaphalium uliginosum L. derived from freshly harvested plant biomass, including stems, leaves, flowers, and roots. The extract was analyzed using gas chromatography-mass spectrometry (GC-MS) to determine its antimicrobial activity against phytopathogenic bacteria and fungi. Two methods were used in the experiments: agar well diffusion and double serial dilution. Extraction was carried out using the maceration method with different temperature regimes (25 °C, 45 °C, and 75 °C) and the ultrasonic method at various powers (63–352 W) for different durations (5 and 10 min). It was found that the 70% ethanol extract obtained through the ultrasonic experiment at 189 W power for 10 min and at 252 W power for 5 min had the highest antimicrobial activity compared to the maceration method. The most sensitive components of the extracts were the Gram-positive phytopathogenic bacteria Clavibacter michiganensis and the Gram-negative phytopathogenic bacteria Erwinia carotovora spp., with MIC values of 156 μg/mL. Among the fungi, the most sensitive were Rhizoctonia solani and Alternaria solani (MIC values in the range of 78–156 µg/mL). The evaluation of the antimicrobial activity of extracts using the diffusion method established the presence of a growth suppression zone in the case of C. michiganensis (15–17 mm for flowers, leaves, and total biomass), which corresponds to the average level of antimicrobial activity. These findings suggest that G. uliginosum has potential as a source of biologically active compounds for agricultural use, particularly for developing novel biopesticides.