Antimicrobial and Antibiofilm Effect of Bacteriocin-Producing Pediococcus inopinatus K35 Isolated from Kimchi against Multidrug-Resistant Pseudomonas aeruginosa

Author:

Yi Eun-Ji1ORCID,Kim Ae-Jung1

Affiliation:

1. Department of Alternative Medicine, Kyonggi University, Seoul 03746, Republic of Korea

Abstract

Background: Recently, the emergence of multidrug-resistant bacteria due to the misuse of antibiotics has attracted attention as a global public health problem. Many studies have found that fermented foods are good sources of probiotics that are beneficial to the human immune system. Therefore, in this study, we tried to find a substance for the safe alternative treatment of multidrug-resistant bacterial infection in kimchi, a traditional fermented food from Korea. Method: Antimicrobial activity and antibiofilm activity were assessed against multidrug-resistant (MDR) Pseudomonas aeruginosa using cell-free supernatants of lactic acid bacteria (LAB) isolated from kimchi. Then, UPLC-QTOF-MS analysis was performed to detect the substances responsible for the antimicrobial effect. Results: The cell-free supernatant (CFS) of strain K35 isolated from kimchi effectively inhibited the growth of MDR P. aeruginosa. Similarly, CFS from strain K35 combined with P. aeruginosa co-cultures produced significant inhibition of biofilm formation upon testing. On the basis of 16s rRNA gene sequence similarity, strain K35 was identified as Pediococcus inopinatus. As a result of UPLC-QTOF-MS analysis of the CFS of P. inopinatus K35, curacin A and pediocin A were detected. Conclusion: As a result of this study, it was confirmed that P. inopinatus isolated from kimchi significantly reduced MDR P. aeruginosa growth and biofilm formation. Therefore, kimchi may emerge as a potential source of bacteria able to help manage diseases associated with antibiotic-resistant infections.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3