A Cysteine-Reloading Process Initiating the Biosynthesis of the Bicyclic Scaffold of Dithiolopyrrolones

Author:

Chen Yan1,Tu Yanqin1,Pan Tingyu1,Deng Zixin1,Duan Lian1ORCID

Affiliation:

1. Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China

Abstract

Dithiolopyrrolone antibiotics are well known for their outstanding biological activities, and their biosynthesis has been studied vigorously. However, the biosynthesis mechanism of the characteristic bicyclic scaffold is still unknown after years of research. To uncover this mechanism, a multi-domain non-ribosomal peptide synthase DtpB from the biosynthetic gene cluster of thiolutin was selected as an object to study. We discovered that its adenylation domain not only recognized and adenylated cysteine, but also played an essential role in the formation of the peptide bond. Notably, an eight-membered ring compound was also discovered as an intermediate during the formation of the bicyclic structure. Based on these findings, we propose a new mechanism for the biosynthesis of the bicyclic scaffold of dithiolopyrrolones, and unveil additional functions of the adenylation domain.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3