Role of AmpC-Inducing Genes in Modulating Other Serine Beta-Lactamases in Escherichia coli

Author:

Mallik Dhriti,Jain Diamond,Bhakta SanjibORCID,Ghosh Anindya SundarORCID

Abstract

The consistently mutating bacterial genotypes appear to have accelerated the global challenge with antimicrobial resistance (AMR); it is therefore timely to investigate certain less-explored fields of targeting AMR mechanisms in bacterial pathogens. One of such areas is beta-lactamase (BLA) induction that can provide us with a collection of prospective therapeutic targets. The key genes (ampD, ampE and ampG) to which the AmpC induction mechanism is linked are also involved in regulating the production of fragmented muropeptides generated during cell-wall peptidoglycan recycling. Although the involvement of these genes in inducing class C BLAs is apparent, their effect on serine beta-lactamase (serine-BLA) induction is little known. Here, by using ∆ampD and ∆ampE mutants of E. coli, we attempted to elucidate the effects of ampD and ampE on the expression of serine-BLAs originating from Enterobacteriaceae, viz., CTX-M-15, TEM-1 and OXA-2. Results show that cefotaxime is the preferred inducer for CTX-M-15 and amoxicillin for TEM-1, whereas oxacillin for OXA-2. Surprisingly, exogenous BLA expressions are elevated in ∆ampD and ∆ampE mutants but do not always alter their beta-lactam susceptibility. Moreover, the beta-lactam resistance is increased upon in trans expression of ampD, whereas the same is decreased upon ampE expression, indicating a differential effect of ampD and ampE overexpression. In a nutshell, depending on the BLA, AmpD amidase moderately facilitates a varying level of serine-BLA expression whereas AmpE transporter acts likely as a negative regulator of serine-BLA.

Funder

Department of Biotechnology

Council of Scientific and Industrial Research

Global Challenges Research Fund

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3