Exploring the Nature of the Antimicrobial Metabolites Produced by Paenibacillus ehimensis Soil Isolate MZ921932 Using a Metagenomic Nanopore Sequencing Coupled with LC-Mass Analysis

Author:

Eltokhy Mohamed A.ORCID,Saad Bishoy T.ORCID,Eltayeb Wafaa N.ORCID,Yahia Ibrahim S.ORCID,Aboshanab Khaled M.ORCID,Ashour Mohamed S. E.

Abstract

The continuous emergence of multidrug-resistant (MDR) pathogens poses a global threat to public health. Accordingly, global efforts are continuously conducted to find new approaches to infection control by rapidly discovering antibiotics, particularly those that retain activities against MDR pathogens. In this study, metagenomic nanopore sequence analysis coupled with spectroscopic methods has been conducted for rapid exploring of the various active metabolites produced by Paenibacillus ehimensis soil isolate. Preliminary soil screening resulted in selection of a Gram-positive isolate identified via 16S ribosomal RNA gene sequencing as Paenibacillus ehimensis MZ921932. The isolate showed a broad range of activity against MDR Gram-positive, Gram-negative, and Candida spp. A metagenomics sequence analysis of the soil sample harboring Paenibacillus ehimensis isolate MZ921932 (NCBI GenBank accession PRJNA785410) revealed the presence of conserved biosynthetic gene clusters of petrobactin, tridecaptin, locillomycin (β-lactone), polymyxin, and macrobrevin (polyketides). The liquid chromatography/mass (LC/MS) analysis of the Paenibacillus ehimensis metabolites confirmed the presence of petrobactin, locillomycin, and macrobrevin. In conclusion, Paenibacillus ehimensis isolate MZ921932 is a promising rich source for broad spectrum antimicrobial metabolites. The metagenomic nanopore sequence analysis was a rapid, easy, and efficient method for the preliminary detection of the nature of the expected active metabolites. LC/MS spectral analysis was employed for further confirmation of the nature of the respective active metabolites.

Funder

Deanship of Scientific Research at King Khalid University

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3