Antifungal Activity of Natural Compounds vs. Candida spp.: A Mixture of Cinnamaldehyde and Eugenol Shows Promising In Vitro Results

Author:

Saracino Ilaria MariaORCID,Foschi ClaudioORCID,Pavoni Matteo,Spigarelli RenatoORCID,Valerii Maria Chiara,Spisni Enzo

Abstract

Candida spp. are commensal organisms of the skin, mucous membranes, gastrointestinal tract, blood, and vagina of animals and humans. In recent decades, the incidence of human fungal infections has increased, with Candida spp. (mainly C. albicans) infections being the most frequent, and the treatment of fungal infections is still a clinical challenge. Colonization of the human gastrointestinal tract by Candida spp. is significant because infections (e.g., candidemia and vulvovaginal candidiasis) frequently arise from commensal microorganisms. The aim of this study was to test in vitro the antifungal activity and the eventual synergistic effect of five pure components of essential oils: cinnamaldehyde, α-pinene, limonene, eucalyptol, and eugenol. These compounds were tested on 18 Candida strains (15 C. albicans, 2 C. glabrata, and 1 C. lusitaniae) derived from a culture collection of vaginal clinical strains. Methods: Fungistatic activity was evaluated using the disk diffusion method. For fungicidal activity, microdilution and time–kill curve protocols were set up. The checkerboard method was chosen to evaluate a possible synergistic effect of these compounds when mixed. Results: Cinnamaldehyde and eugenol gave the best results, inhibiting all the Candida strains and showing a highly additive effect (FICI 0.625). The cinnamaldehyde inhibition zone (IZ), MIC, and MFC means were 69 mm, 50.05 mg/L, and 109.26 mg/L respectively. Cinnamaldehyde led to the total loss of viable Candida cells within 4 h. Eugenol IZ, MIC, and MFC means were 35.2 mm, 455.42 mg/L, and 690.09 mg/L, respectively. Eugenol led to the total loss of viable fungal cells within 1 h. Treatment with α-pinene inhibited 88.9% of Candida strains, with an IZ mean of 21.2 mm, a MIC mean of 195.41 mg/L, and a MFC mean of 251.27 mg/L; this compound led to the total loss of viable fungal cells only after 24 h. Limonene inhibited only 33.3% of the tested strains and eucalyptol did not produce an inhibition halo, so these compounds were not tested further. Conclusions: These characteristics, together with the well-known safety of cinnamaldehyde and eugenol for human use, make these two natural compounds the perfect candidates for the treatment of candidiasis. This was a pilot study, the purpose of which was to evaluate the best composition of a mixture to be used against intestinal and vulvovaginal candidiasis; in vivo studies are needed to confirm these very encouraging results.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3