In Vitro Activity of New β-Lactamase Inhibitor Combinations against blaNDM, blaKPC, and ESBL-Producing Enterobacteriales Uropathogens

Author:

Razaq Lubna1,Uddin Fakhur2ORCID,Ali Shahzad3,Abbasi Shah Muhammad4,Sohail Muhammad1ORCID,Yousif Nabila E.5,Abo-Dief Hala M.5,El-Bahy Zeinhom M.6

Affiliation:

1. Department of Microbiology, University of Karachi, Karachi 75270, Pakistan

2. Department of Microbiology, Basic Medical Sciences Institute (BMSI), Jinnah Postgraduate Medical Center (JPMC), Karachi 75510, Pakistan

3. Department of Urology, Jinnah Postgraduate Medical Center (JPMC), Karachi 75510, Pakistan

4. Department of Main Clinical Laboratory, Jinnah Postgraduate Medical Center (JPMC), Karachi 75510, Pakistan

5. Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

6. Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt

Abstract

Antibiotic resistance in uropathogens has increased substantially and severely affected treatment of urinary tract infections (UTIs). Lately, some new formulations, including meropenem/vaborbactam (MEV), ceftazidime/avibactam (CZA), and ceftolozane/tazobactam (C/T) have been introduced to treat infections caused by drug-resistant pathogens. This study was designed to screen Enterobacteriales isolates from UTI patients and to assess their antimicrobial resistance pattern, particularly against the mentioned (new) antibiotics. Phenotypic screening of extended-spectrum β-lactamase (ESBL) and carbapenem resistance was followed by inhibitor-based assays to detect K. pneumoniae carbapenemase (KPC), metallo-β-lactamase (MBL), and class D oxacillinases (OXA). Among 289 Enterobacteriales, E. coli (66.4%) was the most predominant pathogen, followed by K. pneumoniae (13.8%) and P. mirabilis (8.3%). The isolates showed higher resistance to penicillins and cephalosporins (70–87%) than to non-β-lactam antimicrobials (33.2–41.5%). NDM production was a common feature among carbapenem-resistant (CR) isolates, followed by KPC and OXA. ESBL producers were susceptible to the tested new antibiotics, but NDM-positive isolates appeared resistant to these combinations. KPC-producers showed resistance to only C/T. ESBLs and carbapenemase encoding genes were located on plasmids and most of the genes were successfully transferred to recipient cells. This study revealed that MEV and CZA had significant activity against ESBL and KPC producers.

Funder

Taif University, Saudi Arabia

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3