Affiliation:
1. Laboratory of Environmental Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
2. Laboratory of Molecular Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
Abstract
Worldwide, bacterial resistance is one of the most severe public health problems. Currently, the failure of antibiotics to counteract superbugs highlights the need to search for new molecules with antimicrobial potential to combat them. The objective of this research was to evaluate the antimicrobial activity of Bacillus amyloliquefaciens BS4 against Gram-negative bacteria. Thirty yeasts and thirty-two Bacillus isolates were tested following the agar well-diffusion method. Four Bacillus sp. strains (BS3, BS4, BS17, and BS21) showed antagonistic activity against E. coli ATCC 25922 using bacterial culture (BC) and the cell-free supernatant (CFS), where the BS4 strain stood out, showing inhibitory values of 20.50 ± 0.70 mm and 19.67 ± 0.58 mm for BC and CFS, respectively. The Bacillus sp. BS4 strain can produce antioxidant, non-hemolytic, and antimicrobial metabolites that exhibit activity against several microorganisms such as Salmonella enterica, Klebsiella pneumoniae, Shigella flexneri, Enterobacter aerogenes, Proteus vulgaris, Yersinia enterocolitica, Serratia marcescens, Aeromonas sp., Pseudomonas aeruginosa, Candida albicans, and Candida tropicalis. According to the characterization of the supernatant, the metabolites could be proteinaceous. The production of these metabolites is influenced by carbon and nitrogen sources. The most suitable medium to produce antimicrobial metabolites was TSB broth. The one-factor-at-a-time method was used to standardize parameters such as pH, agitation, temperature, carbon source, nitrogen source, and salts, resulting in the best conditions of pH 7, 150 rpm, 28 °C, starch (2.5 g/L), tryptone (20 g/L), and magnesium sulfate (0.2 g/L), respectively. Moreover, the co-culture was an excellent strategy to improve antimicrobial activity, achieving maximum antimicrobial activity with an inhibition zone of 21.85 ± 1.03 mm. These findings position the Bacillus amyloliquefaciens BS4 strain as a promising candidate for producing bioactive molecules with potential applications in human health.
Funder
Vicerrectorado de Investigación y Posgrado at Universidad Nacional Mayor de San Marcos
CONCYTEC/PROCIENCIA program
Reference55 articles.
1. (2024, February 05). Review on Antimicrobial Resistance. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. Available online: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf.
2. Aslam, B., Khurshid, M., Arshad, M.I., Muzammil, S., Rasool, M., Yasmeen, N., Shah, T., Chaudhry, T.H., Rasool, M.H., and Shahid, A. (2021). Antibiotic Resistance: One Health One World Outlook. Front. Cell Infect. Microbiol., 11.
3. Risk Factors for Antimicrobial Resistance in Escherichia coli in Pigs Receiving Oral Antimicrobial Treatment: A Systematic Review;Burow;Microb. Drug Resist.,2017
4. Antimicrobial Resistance: Implications and Costs;Dadgostar;Infect. Drug Resist.,2019
5. Clinical importance and cost of bacteremia caused by nosocomial multi drug resistant Acinetobacter baumannii;Gulen;Int. J. Infect. Dis.,2015