5-Benzyliden-2-(5-methylthiazol-2-ylimino)thiazolidin-4-ones as Antimicrobial Agents. Design, Synthesis, Biological Evaluation and Molecular Docking Studies

Author:

Haroun Michelyne,Tratrat ChristopheORCID,Kolokotroni Aggeliki,Petrou AnthiORCID,Geronikaki AthinaORCID,Ivanov MarijaORCID,Kostic MarinaORCID,Sokovic MarinaORCID,Carazo AlejandroORCID,Mladěnka PřemyslORCID,Sreeharsha NagarajaORCID,Venugopala Katharigatta N.ORCID,Nair Anroop B.ORCID,Elsewedy Heba S.ORCID

Abstract

In this study, we report the design, synthesis, computational and experimental evaluation of the antimicrobial activity, as well as docking studies of new 5-methylthiazole based thiazolidinones. All compounds demonstrated antibacterial efficacy, some of which (1, 4, 10 and 13) exhibited good activity against E. coli and B. cereus. The evaluation of antibacterial activity against three resistant strains, MRSA, P. aeruginosa and E. coli, revealed that compound 12 showed the best activity, higher than reference drugs ampicillin and streptomycin, which were inactive or exhibited only bacteriostatic activity against MRSA, respectively. Ten out of fifteen compounds demonstrated higher potency than reference drugs against a resistant strain of E. coli, which appeared to be the most sensitive species to our compounds. Compounds 8, 13 and 14 applied in a concentration equal to MIC reduced P. aeruginosa biofilm formation by more than 50%. All compounds displayed antifungal activity, with compound 10 being the most active. The majority of compounds showed better activity than ketoconazole against almost all fungal strains. In order to elucidate the mechanism of antibacterial and antifungal activities, molecular docking studies on E. coli Mur B and C. albicans CYP51 and dihydrofolate reductase were performed. Docking analysis of E. coli MurB indicated a probable involvement of MurB inhibition in the antibacterial mechanism of tested compounds while docking to 14α-lanosterol demethylase (CYP51) and tetrahydrofolate reductase of Candida albicans suggested that probable involvement of inhibition of CYP51 reductase in the antifungal activity of the compounds. Potential toxicity toward human cells is also reported.

Funder

the Serbian Ministry of Education, Science and Technological Development

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3