Identification of Bioactive Compounds from Marine Natural Products and Exploration of Structure-Activity Relationships (SAR)

Author:

Dinarvand Mojdeh,Spain Malcolm

Abstract

Marine natural products (MNPs) have been an important and rich source for antimicrobial drug discovery and an effective alternative to control drug resistant infections. Herein, we report bioassay guided fractionation of marine extracts from sponges Lendenfeldia, Ircinia and Dysidea that led us to identify novel compounds with antimicrobial properties. Tertiary amines or quaternary amine salts: aniline 1, benzylamine 2, tertiary amine 3 and 4, and quaternary amine salt 5, along with three known compounds (6–8) were isolated from a crude extract and MeOH eluent marine extracts. The antibiotic activities of the compounds, and their isolation as natural products have not been reported before. Using tandem mass spectrometry (MS) analysis, potential structures of the bioactive fractions were assigned, leading to the hit validation of potential compounds through synthesis, and commercially available compounds. This method is a novel strategy to overcome insufficient quantities of pure material (NPs) for drug discovery and development which is a big challenge for pharmaceutical companies. The antibacterial screening of the marine extracts has shown several of the compounds exhibited potent in-vitro antibacterial activity, especially against methicillin-resistant Staphylococcus aureus (MRSA) with minimum inhibitory concentration (MIC) values between 15.6 to 62.5 microg mL−1. Herein, we also report structure activity relationships of a diverse range of commercial structurally similar compounds. The structure-activity relationships (SAR) results demonstrate that modification of the amines through linear chain length, and inclusion of aromatic rings, modifies the observed antimicrobial activity. Several commercially available compounds, which are structurally related to the discovered molecules, showed broad-spectrum antimicrobial activity against different test pathogens with a MIC range of 50 to 0.01 µM. The results of cross-referencing antimicrobial activity and cytotoxicity establish that these compounds are promising potential molecules, with a favourable therapeutic index for antimicrobial drug development. Additionally, the SAR studies show that simplified analogues of the isolated compounds have increased bioactivity.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3