Antagonistic Activity of Bacteria Isolated from the Periplaneta americana L. Gut against Some Multidrug-Resistant Human Pathogens

Author:

Amer Asmaa,Hamdy Basma,Mahmoud Dalia,Elanany Mervat,Rady Magda,Alahmadi Tahani,Alharbi Sulaiman,AlAshaal Sara

Abstract

The insect gut is home to a wide range of microorganisms, including several bacterial species. Such bacterial symbionts provide various benefits to their insect hosts. One of such services is providing metabolites that resist infections. Little data are available about gut-inhabiting bacteria for several insect groups. Through the present work, the gut bacteria associated with the American cockroach (Periplaneta americana L.) were isolated, identified, and studied for their potential antimicrobial activity against multidrug-resistant (MDR) human pathogens. The cockroaches were collected from three different environmental sites. Gut bacteria were isolated, and sixteen species of bacteria were identified using Vitek MALDI-TOF MS. The antagonistic activity of the identified bacteria was tested against a panel of multidrug-resistant bacteria and fungi, namely: methicillin-resistant Staphylococcus aureus (MRSA) (clinical isolate), Streptococcus mutans Clarke (RCMB 017(1) ATCC ® 25175™) (Gram-positive bacteria), Enterobacter cloacae (RCMB 001(1) ATCC® 23355™) and Salmonella enterica (ATCC® 25566™) (Gram-negative bacteria). The isolates were also tested against human pathogenic fungi such as Candida albicans (RCMB005003(1) ATCC® 10231™), Aspergillus niger (RCMB002005), Aspergillus fumigatus (RCMB002008), Aspergillus flavus (RCMB002002), and Penicillium italicum (RCMB 001018(1) IMI193019). The results indicated that some bacterial species from the cockroach gut could antagonize the growth activity of all the tested pathogens. Such antimicrobial properties could ultimately lead to the future development of therapeutic drugs. The evaluation and mode of action of antagonistic gut bacteria against the most affected MDR pathogens were demonstrated using transmission electron microscopy (TEM).

Funder

Researchers Supporting Project number, King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3