Fabrication and Characterisation of the Cytotoxic and Antibacterial Properties of Chitosan-Cerium Oxide Porous Scaffolds

Author:

Yildizbakan Lemiha1ORCID,Iqbal Neelam1ORCID,Ganguly Payal2ORCID,Kumi-Barimah Eric1ORCID,Do Thuy3ORCID,Jones Elena2ORCID,Giannoudis Peter V.4ORCID,Jha Animesh1

Affiliation:

1. School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK

2. Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK

3. Division of Oral Biology, School of Dentistry, University of Leeds, Leeds LS9 7TF, UK

4. Academic Department of Trauma and Orthopaedic Surgery, School of Medicine, University of Leeds, Leeds LS2 9JT, UK

Abstract

Bone damage arising from fractures or trauma frequently results in infection, impeding the healing process and leading to complications. To overcome this challenge, we engineered highly porous chitosan scaffolds (S1, S2, and S3) by incorporating 30 (wt)% iron-doped dicalcium phosphate dihydrate (Fe-DCPD) minerals and different concentrations of cerium oxide nanoparticles (CeO2) (10 (wt)%, 20 (wt)%, and 30 (wt)%) using the lyophilisation technique. The scaffolds were specifically designed for the controlled release of antibacterial agents and were systematically characterised by utilising Raman spectroscopy, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy methodologies. Alterations in the physicochemical properties, encompassing pore size, swelling behaviour, degradation kinetics, and antibacterial characteristics, were observed with the escalating CeO2 concentrations. Scaffold cytotoxicity and its impact on human bone marrow mesenchymal stem cell (BM-MSCs) proliferation were assessed employing the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay. The synthesised scaffolds represent a promising approach for addressing complications associated with bone damage by fostering tissue regeneration and mitigating infection risks. All scaffold variants exhibited inhibitory effects on bacterial growth against Staphylococcus aureus and Escherichia coli strains. The scaffolds manifested negligible cytotoxic effects while enhancing antibacterial properties, indicating their potential for reducing infection risks in the context of bone injuries.

Funder

Turkish Ministry of National Education, Republic of Turkiye

EU SBR Project

EPSRC PhD Studentship

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3