Effect of β-Glucan Supplementation on Growth Performance and Intestinal Epithelium Functions in Weaned Pigs Challenged by Enterotoxigenic Escherichia coli

Author:

Zhou Yuankang,Luo Yuheng,Yu BingORCID,Zheng Ping,Yu Jie,Huang ZhiqingORCID,Mao XiangbingORCID,Luo Junqiu,Yan Hui,He JunORCID

Abstract

Background: To examine the effect of β-glucan (BGL) supplementation on growth performance and intestinal epithelium functions in weaned pigs upon Enterotoxigenic Escherichia coli (ETEC) challenge. Methods: Thirty-two weaned pigs (Duroc × Landrace × Yorkshire) were assigned into four groups. Pigs fed with a basal diet or basal diet containing 500 mg/kg BGL were orally infused with ETEC or culture medium. Results: Results showed BGL tended to increase the average daily gain (ADG) in ETEC-challenged pigs (0.05 < p < 0.1). Dietary BGL supplementation had no significant influence on nutrient digestibility (p > 0.05). However, BGL improved the serum concentrations of immunoglobulin (Ig) A and IgG, and was beneficial to relieve the increasement of the concentrations of inflammatory cytokines such as the TNF-α and IL-6 upon ETEC-challenge (p < 0.05). Interestingly, BGL significantly increased the duodenal, jejunal and ileal villus height, and increased the jejunal ratio of villus height to crypt depth (V/C) upon ETEC challenge (p < 0.05). BGL also increased the activities of mucosal, sucrase and maltase in the ETEC-challenged pigs (p < 0.05). Moreover, BGL elevated the abundance of Lactobacillus and the concentration of propanoic acid in colon in the ETEC-challenged pigs (p < 0.05). Importantly, BGL elevated the expression levels of zonula occludins-1 (ZO-1) and mucin-2 (MUC-2) in the small intestinal mucosa upon ETEC challenge (p < 0.05). BGL also upregulated the expressions of functional genes such as the claudin-1, cationic amino acid transporter-1 (CAT-1), LAT-1, L amino acid transporter-1 (LAT1), fatty acid transport proteins (FATP1), FATP4, and sodium/glucose cotransporter-1 (SGLT-1) in the duodenum, and the occludin-1 and CAT-1 in the jejunum upon ETEC challenge (p < 0.05). Conclusions: These results suggested that BGL can attenuate intestinal damage in weaned pigs upon ETEC challenge, which was connected with the suppressed secretion of inflammatory cytokines and enhanced serum immunoglobulins, as well as improved intestinal epithelium functions and microbiota.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3