Abstract
Ivermectin (IVM) is a versatile drug used against many microorganisms. Staphylococcus aureus is one of the most devastating microorganisms. IVM sensitive and resistant S. aureus strains were recently reported. However, the underlying molecular mechanisms of resistance are unknown. Clinical isolates of S. aureus were used for determination of the sensitivities against IVM by growth curve analysis and time-kill kinetics. Then, proteomic, and biochemical approaches were applied to investigate the possible mechanisms of resistance. Proteomic results showed a total of 1849 proteins in the dataset for both strains, 425 unique proteins in strain O9 (IVM sensitive), and 354 unique proteins in strain O20 (IVM resistant). Eight proteins with transport functions were differentially expressed in the IVM resistant strain. Among them, three efflux pumps (mepA, emrB, and swrC) were confirmed by qPCR. The IVM resistant S. aureus may overexpress these proteins as a key resistance determinant. Further experiments are required to confirm the exact mechanistic relationship. Nevertheless, the possibility of blocking these transporters to reverse or delay the onset of resistance and reduce selection pressure is potentially appealing.
Funder
The study was supported financially in part by Natural Sciences and Engineering Research Council (NSERC) of Canada
Subject
Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献