Abstract
This study aimed to investigate the effect of a structural pharmacokinetic (PK) model with fewer compartments developed following sparse sampling on the PK parameter estimation and the probability of target attainment (PTA) prediction of vancomycin. Two- and three-compartment PK models of vancomycin were used for the virtual concentration–time profile simulation. Datasets with reduced blood sampling times were generated to support a model with a lesser number of compartments. Monte Carlo simulation was conducted to evaluate the PTA. For the two-compartment PK profile, the total clearance (CL) of the reduced one-compartment model showed a relative bias (RBias) and relative root mean square error (RRMSE) over 90%. For the three-compartment PK profile, the CL of the reduced one-compartment model represented the largest RBias and RRMSE, while the steady-state volume of distribution of the reduced two-compartment model represented the largest absolute RBias and RRMSE. A lesser number of compartments corresponded to a lower predicted area under the concentration–time curve of vancomycin. The estimated PK parameters and predicted PK/PD index from models built with sparse sampling designs that cannot support the PK profile can be significantly inaccurate and unprecise. This might lead to the misprediction of the PTA and selection of improper dosage regimens when clinicians prescribe antibiotics.
Funder
Hallym University Research Fund
National Research Foundation of Korea
Subject
Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献