Biofilm Formation of Staphylococcus aureus from Pets, Livestock, and Wild Animals: Relationship with Clonal Lineages and Antimicrobial Resistance

Author:

Silva VanessaORCID,Correia EliseteORCID,Pereira José Eduardo,González-Machado Camino,Capita RosaORCID,Alonso-Calleja CarlosORCID,Igrejas GilbertoORCID,Poeta PatríciaORCID

Abstract

This study aimed to compare the biofilm formation ability of Staphylococcus aureus isolated from a wide range of animals and study the association between biofilm formation and antimicrobial resistance and genetic lineages. A total of 214 S. aureus strains isolated from pets, livestock, and wild animals were evaluated regarding their ability to form biofilms by the microtiter biofilm assay and their structure via confocal scanning laser microscopy. Statistical analysis was used to find an association between biofilm formation and antimicrobial resistance, multidrug resistance, sequence types (STs), spa and agr-types of the isolates. The antimicrobial susceptibility of 24 h-old biofilms was assessed against minimum inhibitory concentrations (MIC) and 10× MIC of amikacin and tetracycline, and the biomass reduction was measured. The metabolic activity of biofilms after antimicrobial treatment was evaluated by the XTT assay. All isolates were had the ability to form biofilms. Yet, significant differences in biofilm biomass production were detected among animal species. Multidrug resistance had a positive association with biofilm formation as well as methicillin-resistance. Significant differences were also detected among the clonal lineages of the isolates. Both tetracycline and amikacin were able to significantly reduce the biofilm mass. However, none of the antimicrobials were able to eradicate the biofilm at the maximum concentration used. Our results provide important information on the biofilm-forming capacity of animal-adapted S. aureus isolates, which may have potential implications for the development of new biofilm-targeted therapeutics.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Reference97 articles.

1. Shared antibiotic resistance and virulence genes in Staphylococcus aureus from diverse animal hosts

2. Staphylococcus aureus-associated skin and soft tissue infections: Anatomical localization, epidemiology, therapy and potential prophylaxis;Olaniyi,2016

3. Pathogenicity and virulence of Staphylococcus aureus

4. Staphylococcus aureus Colonization of the Human Nose and Interaction with Other Microbiome Members;Claudia;Microbiol. Spectr.,2019

5. Staphylococcus aureus in Animals;Haag;Gram-Positive Pathog.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3