Study the Effect of Conjugate Novel Ultra-Short Antimicrobial Peptide with Silver Nanoparticles against Methicillin Resistant S. aureus and ESBL E. coli

Author:

Darwish Rula M.ORCID,Salama Ali H.

Abstract

Background: Bacterial resistance is a challenging limitation in infection treatment. This work evaluates the potential antibacterial activity of conjugation of Tryasine peptide with silver nanoparticles against selected pathogens. Materials and Methods: The peptide Tryasine was produced using three subunits of tryptophan and three lysine amino acids, then its purity was determined by reverse-phase high-performance liquid chromatography. The peptide was confirmed using mass spectrometry and electrospray ionization mass spectrometry. Silver nanoparticles conjugate with Tryasine was synthesized by adding Tryasine-silver nitrate solution in the presence of the reducing agent sodium borohydride. The presence of Tryasine-silver nanoparticles was indicated by the yellow-brown color and was further confirmed through ultraviolet-visible spectrophotometry. The minimum inhibitory and minimum bactericidal concentrations for Tryasine nanoparticles were determined against Staphylococcus aureus, Escherichia coli, methicillin resistant Staphylococcus aureus, and ESBL Escherichia coli using the microdilution method. Toxicity for nanoparticles conjugated with Tryasine was determined using erythrocyte hemolytic assay. Results: Tryasine alone was effective (MIC around 100 and 200 μM) against standard and resistant strains of bacteria used. However, Tryasine-silver nanoparticles were more effective with MICs ranging from 30 to 100 μM depending on the bacterial strain used. Tryasine-silver nanoparticles at concentration of 100 μM only caused 1% hemolysis on human erythrocytes after 30 min of incubation. Conclusions: The findings indicate that Tryasine-silver nanoparticles had good antibacterial activity against pathogenic strains of Gram-positive and Gram-negative bacteria. Additionally, the conjugate showed low hemolytic activity and cytotoxicity. Therefore, conjugation of Tryasine with silver nanoparticles is a promising treatment candidate for bacterial infection with low toxicity.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3