Characteristics of Antibiotic Resistance and Tolerance of Environmentally Endemic Pseudomonas aeruginosa

Author:

Kim Seryoung,Masai SatomiORCID,Murakami Keiji,Azuma Momoyo,Kataoka Keiko,Sebe Mayu,Shimizu Kazuya,Itayama Tomoaki,Whangchai Niwooti,Whangchai Kanda,Ihara Ikko,Maseda HideakiORCID

Abstract

Antibiotic-resistant bacteria remain a serious public health threat. In order to determine the percentage of antibiotic-resistant and -tolerant Pseudomonas aeruginosa cells present and to provide a more detailed infection risk of bacteria present in the environment, an isolation method using a combination of 41 °C culture and specific primers was established to evaluate P. aeruginosa in the environment. The 50 strains were randomly selected among 110 isolated from the river. The results of antibiotic susceptibility evaluation showed that only 4% of environmental strains were classified as antibiotic-resistant, while 35.7% of clinical strains isolated in the same area were antibiotic-resistant, indicating a clear difference between environmental and clinical strains. However, the percentage of antibiotic-tolerance, an indicator of potential resistance risk for strains that have not become resistant, was 78.8% for clinical strains and 90% for environmental strains, suggesting that P. aeruginosa, a known cause of nosocomial infections, has a high rate of antibiotic-tolerance even in environmentally derived strains. It suggested that the rate of antibiotic-tolerance is not elicited by the presence or absence of antimicrobial exposure. The combination of established isolation and risk analysis methods presented in this study should provide accurate and efficient information on the risk level of P. aeruginosa in various regions and samples.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Reference40 articles.

1. Antimicrobials in Agriculture and the Environment: Reducing Unnecessary Use and Waste. In The Review on Antimicrobial Resistance (AMR) https://amr-review.org/sites/default/files/Antimicrobials%20in%20agriculture%20and%20the%20environment%20-%20Reducing%20unnecessary%20use%20and%20waste.pdf

2. No Time to Wait: Securing the Future from Drug-Resistant Infections, Report to the Secretary-General of the United Nations https://www.who.int/publications/i/item/no-time-to-wait-securing-the-future-from-drug-resistant-infections

3. Bacteriophages benefit from generalized transduction

4. The Conjugation Window in an Escherichia coli K-12 Strain with an IncFII Plasmid

5. Conjugative Plasmid Transfer in Gram-Positive Bacteria

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3