Effects of Enrofloxacin on the Epiphytic Algal Communities Growing on the Leaf Surface of Vallisneria natans

Author:

Chen Qi,Jin Luqi,Zhong Yuan,Ji GaohuaORCID

Abstract

Enrofloxacin (ENR) is a member of quinolones, which are extensively used in livestock farming and aquaculture to fight various bacterial diseases, but its residues are partially transferred to surface water and affect the local aquatic ecosystem. There are many studies on the effect of ENR on the growth of a single aquatic species, but few on the level of the aquatic community. Epiphytic algae, which are organisms attached to the surface of submerged plants, play an important role in the absorption of nitrogen and phosphorus in the ecological purification pond which are mainly constructed by submerged plants, and are commonly used in aquaculture effluent treatment. Enrofloxacin (ENR) is frequently detected in aquaculture ponds and possibly discharged into the purification pond, thus imposing stress on the pond ecosystem. Here, we performed a microcosm experiment to evaluate the short-term effects of pulsed ENR in different concentrations on the epiphytic algal communities growing on Vallisneria natans. Our results showed an overall pattern of “low-dose-promotion and high-dose-inhibition”, which means under low and median ENR concentrations, the epiphytic algal biomass was promoted, while under high ENR concentrations, the biomass was inhibited. This pattern was mainly attributed to the high tolerance of filamentous green algae and yellow-green algae to ENR. Very low concentrations of ENR also favored the growth of diatoms and cyanobacteria. These results demonstrate a significant alteration of epiphytic algal communities by ENR and also spark further research on the potential use of filamentous green algae for the removal of ENR in contaminated waters because of its high tolerance.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3