Abstract
Objectives: To perform a pharmacokinetic/pharmacodynamic (PK/PD) analysis of continuous-infusion (CI) fosfomycin combined with extended-infusion (EI) cefiderocol or CI ceftazidime-avibactam in a case series of severe difficult-to-treat Pseudomonas aeruginosa (DTR-PA) infections. Methods: A single-center retrospective study of patients who were treated with CI fosfomycin plus EI cefiderocol or CI ceftazidime-avibactam for severe DTR-PA infections and who underwent therapeutic drug monitoring (TDM), from 1 September 2021 to 30 June 2022 was performed. Concentrations were measured at steady-state (Css) for CI fosfomycin and ceftazidime-avibactam and at trough (Cmin) for EI cefiderocol. Joint PK/PD targets of combination therapy were analyzed (thresholds: area-under-the curve to minimum inhibitory concentration (AUC/MIC) ratio > 40.8 for fosfomycin; ceftazidime Css/MIC ratio ≥ 4 coupled with avibactam Css > 4 mg/L for ceftazidime-avibactam; Cmin/MIC ratio ≥ 4 for cefiderocol). Joint PK/PD targets of the combination therapy were analyzed and defined as optimal when both were achieved, quasi-optimal if only one of the two was achieved, and suboptimal if none of the two was achieved). The relationship between joint PK/PD target attainment and microbiological response was assessed. Results: Six patients (three pneumonia, two BSI + pneumonia, and one BSI) were included. The joint PK/PD targets were optimal in four cases and quasi-optimal in the other two. Microbiological eradication (ME) occurred in 4/4 of patients with optimal joint PK/PD targets and in one of the two patients with quasi-optimal joint PK/PD targets. Conclusions: Attaining optimal joint PK/PD targets with a combo-therapy of CI fosfomycin plus EI cefiderocol or CI ceftazidime-avibactam could represent an effective strategy for granting favorable microbiological outcomes in patients with DTR-PA pneumonia and/or BSI.
Subject
Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology
Reference48 articles.
1. Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis;Tacconelli;Lancet Infect. Dis.,2018
2. Antimicrobial Resistance in the Intensive Care Unit: A Focus on Gram-Negative Bacterial Infections;MacVane;J. Intensive Care Med.,2017
3. Novel Pharmacotherapy for the Treatment of Hospital-Acquired and Ventilator-Associated Pneumonia Caused by Resistant Gram-Negative Bacteria;Kidd;Expert Opin. Pharmacother.,2018
4. Difficult-to-Treat Resistance in Gram-Negative Bacteremia at 173 US Hospitals: Retrospective Cohort Analysis of Prevalence, Predictors, and Outcome of Resistance to All First-Line Agents;Kadri;Clin. Infect. Dis.,2018
5. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-Lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas Aeruginosa with Difficult-to-Treat Resistance (DTR-P. Aeruginosa);Tamma;Clin. Infect. Dis.,2022
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献