Abstract
Lincomycin, as one of the most commonly used antibiotics, may cause intestinal injury, enteritis and other side effects, but it remains unknown whether these effects are associated with microbial changes and the effects of different doses of lincomycin on infants. Here, 21-day old mice were exposed to 1 and 5 g/L lincomycin to explore the effects of lincomycin on the gut microbiota, metabolites and inflammation. Compared to the control mice, 1 g/L lincomycin exposure decreased the body weight gain of mice (p < 0.05). Both 1 and 5 g/L lincomycin exposure reduced the diversity and microbial composition of mice (p < 0.05). Furthermore, 1 and 5 g/L lincomycin reduced the relative concentrations of acetate, propionate, butyrate, valerate, isobutyric acid and isovaleric acid in the colon chyme of mice (p < 0.05). In addition, 5 g/L lincomycin exposure reduced the villus height, crypt depth, and relative expression of TLR2, TLR3, TLR4, IL-18, TNF-α, and p65 in the jejunum of mice (p < 0.05), while 1 g/L lincomycin exposure reduced the relative expression of TLR2, TLR3, TNF-α, and p65 (p < 0.05). Collectively, these results highlight the depletion effect of short-term lincomycin exposure on microbiota and the further regulatory effect on intestinal morphology and immunosuppression in infant mice.
Funder
National Natural Science Foundation of China
Subject
Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology