Synthetic Amphipathic β-Sheet Temporin-Derived Peptide with Dual Antibacterial and Anti-Inflammatory Activities

Author:

Bellavita RosaORCID,Buommino ElisabettaORCID,Casciaro BrunoORCID,Merlino FrancescoORCID,Cappiello FlorianaORCID,Marigliano Noemi,Saviano Anella,Maione FrancescoORCID,Santangelo Rosaria,Mangoni Maria LuisaORCID,Galdiero StefaniaORCID,Grieco PaoloORCID,Falanga AnnaritaORCID

Abstract

Temporin family is one of the largest among antimicrobial peptides (AMPs), which act mainly by penetrating and disrupting the bacterial membranes. To further understand the relationship between the physical-chemical properties and their antimicrobial activity and selectivity, an analogue of Temporin L, [Nle1, dLeu9, dLys10]TL (Nle-Phe-Val-Pro-Trp-Phe-Lys-Phe-dLeu-dLys-Arg-Ile-Leu-CONH2) has been developed in the present work. The design strategy consisted of the addition of a norleucine residue at the N-terminus of the lead peptide sequence, [dLeu9, dLys10]TL, previously developed by our group. This modification promoted an increase of peptide hydrophobicity and, interestingly, more efficient activity against both Gram-positive and Gram-negative strains, without affecting human keratinocytes and red blood cells survival compared to the lead peptide. Thus, this novel compound was subjected to biophysical studies, which showed that the peptide [Nle1, dLeu9, dLys10]TL is unstructured in water, while it adopts β-type conformation in liposomes mimicking bacterial membranes, in contrast to its lead peptide forming α-helical aggregates. After its aggregation in the bacterial membrane, [Nle1, dLeu9, dLys10]TL induced membrane destabilization and deformation. In addition, the increase of peptide hydrophobicity did not cause a loss of anti-inflammatory activity of the peptide [Nle1, dLeu9, dLys10]TL in comparison with its lead peptide. In this study, our results demonstrated that positive net charge, optimum hydrophobic−hydrophilic balance, and chain length remain the most important parameters to be addressed while designing small cationic AMPs.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3