Comparison of Hypervirulent and Non-Hypervirulent Carbapenem-Resistant Acinetobacter baumannii Isolated from Bloodstream Infections: Mortality, Potential Virulence Factors, and Combination Therapy In Vitro

Author:

Yao Likang1ORCID,Liu Ningjing1,Guo Yingyi1,Zhuo Chuyue1ORCID,Yang Xu1ORCID,Wang Yijing1,Wang Jiong1,Li Feifeng1ORCID,Li Jiahui1,He Nanhao1,Chen Jiakang1,Lin Yexin1,Xiao Shunian1,Zhuo Chao1

Affiliation:

1. State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China

Abstract

Hypervirulent carbapenem-resistant Acinetobacter baumannii (hv-CRAB) has emerged in bloodstream infections (BSI). Cases of BSI caused by hv-CRAB (hv-CRAB-BSI) had posed a significant threat to hospitalized patients. In this study, 31 CRAB strains isolated from Chinese BSI patients were analyzed, of which 24 were identified as hv-CRAB-BSI and 7 as non-hv-CRAB-BSI, using the Galleria mellonella infection model. Patients with hv-CRAB-BSI had higher rates of septic shock (79.2% vs. 14.3%, p = 0.004) and mortality (66.7% vs. 14.3%, p = 0.028). All strains were resistant to most antibiotics but sensitive to colistin. Hv-CRAB-BSI showed lower resistance to minocycline than non-hv-CRAB-BSI (54.2% vs. 100%, p = 0.03). Whole-genome sequencing revealed that the detection rates of immune modulation genes ptk and epsA in hv-CRAB-BSI were significantly higher than in non-hv-CRAB-BSI (91.7% vs. 28.6%, p = 0.002). Additionally, all ST457 hv-CRAB-BSI lacked abaR, and all ST1486 non-hv-CRAB-BSI lacked adeG. The checkerboard dilution method assessed the efficacies of various antibiotic combinations, revealing that although synergism was rarely observed, the combination of colistin and minocycline showed the best efficacy for treating CRAB-BSI, regardless of whether the infections were hv-CRAB-BSI or non-hv-CRAB-BSI. These findings highlight the importance of analyzing molecular characteristics and exploring effective treatment strategies for hv-CRAB-BSI.

Funder

State’s Key Project of Research and Development Plan

high-level Scientific Research Project of People’s Hospital of Yangjiang

Special Foundation for National Science and Technology Basic Research Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3